100 Days of Code – Day 4

Today I successfully created a pandas DataFrame in rtlamrvis.py containing the rtlamr data, and created line plots for individual meter IDs. Scatter plots aren’t working, but a line still shows what’s going on. Below are a few sample plots, including two of data I previously hypothesized is from a power meter on a building with solar panels.

Partial day’s data from what I believe is a power meter on a building with solar panels
Another power meter with solar panels; the peaks happen at around 10:00 AM each day
This is probably a gas meter, judging by the on-off cycles

I’m really pleased that I finally had some success plotting the rtlamr data. It took a long time to find a pandas plotting example that I could understand. Most of the examples I found were either obviously not written for a beginner in mind, or assumed the reader would be using Jupyter notebooks. My code was executing without errors but I still wasn’t seeing any plots…until I found that magic incantation:

matplotlib.pyplot.show()

Next steps:

  • Figure out how to plot multiple data sets on the same axes
  • Calculate and plot the rate of consumption instead of the consumption counter value
  • Get scatter plots working

100 Days of Code – Day 3

Today I wanted to start experimenting with plotting data with Python, and began investigating the pandas library. I looked at a few tutorials, but quickly realized this wasn’t going to be a get-it-up-and-running-in-10-minutes thing, at least at my current skill level. I definitely have more reading to do on this topic.

Since I wasn’t ready to plot anything, and wasn’t sure what I wanted to work on next in rtlamrvis, I decided to work through a few Python tutorials. I’m going to start splitting my hour of code between tutorials and projects, until I have a better handle on the basics of Python. I think that will make my coding sessions more productive and lest frustrating.

After working on tutorials for a while, I decided to look at rtlamrvis again, and changed the way it’s organizing the data from rtlamr. Instead of the list-of-dictionaries structure, I now have a dictionary-of-lists-of-dictionaries structure. Despite sounding more complicated, I think it will make it easier when it comes time to plot the data, since it will be grouped by ID rather than by date. Maybe there’s a way to do this all in a pandas dataframe, but I’m not at that level yet.

I used pprint, part of the standard library, to verify that the code was doing what I wanted. Here’s an example of the output, which shows the new data structure. (Note: I always change the IDs before I publicly post any of the output, since I’m running my script against real data received from utility meters in my neighborhood.)

{25130001: [{'Consumption': 1692966, 'Time': '2019-01-31T14:37:59.535801779-08:00'},
{'Consumption': 1692966, 'Time': '2019-01-31T14:39:01.912742779-08:00'},
{'Consumption': 1692966, 'Time': '2019-01-31T14:39:02.275644411-08:00'},
{'Consumption': 1692966, 'Time': '2019-01-31T14:40:02.637966157-08:00'},
{'Consumption': 1692966, 'Time': '2019-01-31T14:40:02.984066933-08:00'},
{'Consumption': 1692966, 'Time': '2019-01-31T14:44:08.92041054-08:00'},
{'Consumption': 1692966, 'Time': '2019-01-31T14:45:07.802489288-08:00'},
{'Consumption': 1692966, 'Time': '2019-01-31T14:45:08.149153195-08:00'}],
25130002: [{'Consumption': 1268989, 'Time': '2019-01-31T14:37:59.651609372-08:00'},
{'Consumption': 1268996, 'Time': '2019-01-31T14:39:02.027027329-08:00'},
{'Consumption': 1268996, 'Time': '2019-01-31T14:39:02.398141433-08:00'},
{'Consumption': 1269003, 'Time': '2019-01-31T14:40:02.753874744-08:00'},
{'Consumption': 1269003, 'Time': '2019-01-31T14:40:03.135628029-08:00'},
{'Consumption': 1269027, 'Time': '2019-01-31T14:44:08.69528619-08:00'},
{'Consumption': 1269027, 'Time': '2019-01-31T14:44:09.036069368-08:00'},
{'Consumption': 1269032, 'Time': '2019-01-31T14:45:07.918476317-08:00'},
{'Consumption': 1269032, 'Time': '2019-01-31T14:45:08.307969063-08:00'}],
25130003: [{'Consumption': 423976, 'Time': '2019-01-31T14:37:59.472225052-08:00'},
{'Consumption': 423976, 'Time': '2019-01-31T14:37:59.800811534-08:00'},
{'Consumption': 423970, 'Time': '2019-01-31T14:39:02.157949477-08:00'},
{'Consumption': 423970, 'Time': '2019-01-31T14:39:02.52558898-08:00'},
{'Consumption': 423963, 'Time': '2019-01-31T14:40:03.251006466-08:00'},
{'Consumption': 423939, 'Time': '2019-01-31T14:44:09.187101414-08:00'},
{'Consumption': 423934, 'Time': '2019-01-31T14:45:08.033166217-08:00'},
{'Consumption': 423934, 'Time': '2019-01-31T14:45:08.416413207-08:00'}],
25790004: [{'Consumption': 250917, 'Time': '2019-01-31T14:38:41.19477672-08:00'}],
32780005: [{'Consumption': 365170, 'Time': '2019-01-31T14:40:27.925069332-08:00'},
{'Consumption': 365170, 'Time': '2019-01-31T14:46:23.433415367-08:00'},
{'Consumption': 365170, 'Time': '2019-01-31T14:48:23.422122806-08:00'}],
33560006: [{'Consumption': 169636, 'Time': '2019-01-31T14:42:46.470004195-08:00'},
{'Consumption': 169636, 'Time': '2019-01-31T14:44:46.970037449-08:00'}],
34330007: [{'Consumption': 452616, 'Time': '2019-01-31T14:45:09.642549085-08:00'}],
34330008: [{'Consumption': 110476, 'Time': '2019-01-31T14:39:43.206066618-08:00'},
{'Consumption': 110476, 'Time': '2019-01-31T14:41:45.70258951-08:00'},
{'Consumption': 110476, 'Time': '2019-01-31T14:43:44.22001873-08:00'},
{'Consumption': 110476, 'Time': '2019-01-31T14:45:41.200623187-08:00'},
{'Consumption': 110478, 'Time': '2019-01-31T14:49:41.202099703-08:00'}],
35060009: [{'Consumption': 339538, 'Time': '2019-01-31T14:38:57.983626969-08:00'},
{'Consumption': 339538, 'Time': '2019-01-31T14:47:00.485356661-08:00'}],
41930010: [{'Consumption': 419058, 'Time': '2019-01-31T14:44:48.43359395-08:00'},
{'Consumption': 419058, 'Time': '2019-01-31T14:45:49.434384863-08:00'},
{'Consumption': 419058, 'Time': '2019-01-31T14:49:49.41852109-08:00'}],
47570011: [{'Consumption': 275208, 'Time': '2019-01-31T14:40:05.089249374-08:00'},
{'Consumption': 275208, 'Time': '2019-01-31T14:42:05.604592569-08:00'},
{'Consumption': 275208, 'Time': '2019-01-31T14:47:05.086830549-08:00'},
{'Consumption': 275208, 'Time': '2019-01-31T14:49:05.085712251-08:00'},
{'Consumption': 275208, 'Time': '2019-01-31T14:50:05.58677753-08:00'}],
47580012: [{'Consumption': 150236, 'Time': '2019-01-31T14:39:51.690447444-08:00'},
{'Consumption': 150236, 'Time': '2019-01-31T14:42:51.189222909-08:00'}],
49570013: [{'Consumption': 67188, 'Time': '2019-01-31T14:40:01.321136185-08:00'}]}

The data appears the way I expect, and it’s much easier to read now than in the original format from rtlamr. This is the output for 50 lines of input data. With more lines, you can start to see some interesting trends. For example, ID 25130003 shows a decreasing Consumption value, while the rest show an increasing value. When I look at a larger dataset, I can see that number fluctuate up and down. This would make no sense for a gas or water meter, so my guess is that 25130003 is a power meter and the owner has solar panels (sometimes they’re generating more power than they’re consuming). It’s a curiosity, but I’m not going to go around snooping at all my neighbors’ meters to solve the mystery. The point of this project is to help me identify my own meter, not invade others’ privacy.

100 Days of Code

I’m working on learning Python, and improving my coding skills in general, and have decided to take the #100DaysOfCode challenge. The official challenge website explains it all but, in a nutshell, I’m making a commitment to code for at least an hour every day, for 100 days, on my own projects outside of work. I will be posting updates on twitter, on GitHub, and on this blog. I have a couple ideas for projects to start out with, and just need to decide on a list of features I want to implement before I get started coding.

The first project I have in mind will be a tool to visualize natural gas consumption data gathered through the rtlamr tool. In addition to the gas meter data, my visualization tool will also graph the furnace thermostat on/off state data received from my home automation system via an MQTT broker. The goal is to see if I can correlate the furnace usage with any of the gas meter data received by rtlamr – I’m not seeing my gas meter’s serial number in the data and I think it may actually have a different serial number than what’s printed on the transmitter’s label. Rtlamr can output in JSON, so parsing the data won’t be challenging. I have little experience with the paho-mqtt library, however, and have never worked with any of the Python graphing libraries. I expect I’ll learn quite a bit from this first project.